GGSIPU mathmatics 2007

1. If $p \wedge \sim r \rightarrow \sim p^{\wedge} q$ is false, then the truth values of p, q and r are respectively
a T,F and F
b F,F and T
c F,Tand T
d T, F and T
2. If α, β and γ are the roots of equation $\mathbf{x}^{3}-8 \mathbf{x}+8=0$, then $\sum \alpha^{2}$ and $\sum \frac{1}{\alpha \alpha^{\beta}}$ are respectively
a 0 and -16
b 16 and 8
c -16 and 0
d 16 and 0
3. The GCD of 1080 and 675 is
a 145
b 135
c 225
d 125
4. If a, b and $c \in N$, then which one of the following is not true ?
a a |b and $\mathbf{a}|\mathbf{c} \Rightarrow \mathbf{a}| \mathbf{3 b}+\mathbf{2 c}$
b a |b and a|c $\mathbf{c}=\mathbf{a} \mid \mathbf{c}$
c a $|\mathbf{b}+\mathbf{c} \Rightarrow \mathbf{a}|$ ba and $\mathbf{a} \mid c$
d a $\mid \mathbf{b}$ and $\mathbf{a}|\mathbf{c} \Rightarrow \mathbf{a}| \mathrm{b}+\mathbf{c}$
5. $x=41+\cos \theta$ and $y \Rightarrow 1-1+\sin \theta$ are the paramatic equations of
a $-\frac{x-3)^{2}}{9}+-\frac{y-4)^{2}}{16}=1$
b $-\frac{x+4)^{2}}{16}+-\frac{y+3)^{2}}{9}=1$
c $-\frac{x-4)^{2}}{16}-\frac{y-3)^{2}}{9}=1$
d $\quad \frac{x-4)^{2}}{16}+\frac{y-3)^{2}}{9}=1$
6. If the distance between the foci and the distance between the directrices of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=$ 1 are in the ratio 3:2,then a:b is
a $\sqrt{2}: 1$
b $\sqrt{3}: \sqrt{2}$
c $1: 2$
(c 22
7. The ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ have in common
a centre only
b centre,foci and directrices
c centre,foci and vertices
d centre and vertices only
8. If $\sec \theta=\mathrm{m}$ and $\tan \theta=\mathrm{n}$, then $\frac{1}{m}\left[m+n+\frac{1}{n+n)}\right]$ is
a 2 b 2m
(c) 2 n
(d) m
9. The value of $\frac{\sin 85^{\circ}-\sin 35^{\circ}}{\cos 65^{\circ}}$ is
$\begin{array}{llll}a & 2 & b & -1\end{array}$
c 1 d 0
10. If the length of the tengent from any point on the circle $x-3^{2}+y+2^{2}=5 r^{2}$ to the circle $x-3^{2}+y+2^{2}$ $=r^{2}$ is 16 unit,then the area between the two circles in sq unit is
a 32π b 4π
b 8π
d 256π
11. The equation of the common tangent of the two touching circles $y^{2}+x^{2}-6 x-12 y+37=0$ and $x^{2}+y^{2}-$ $6 y+7=0$ is
a $\quad x+y-5=0$
b $x-y+5=0$
c $x-y-5=0$
d $x+y+5=0$
12. The equation of the parabolas with vertex at $-1,1$ and focus 2,1 is
a $y^{2}-2 y-12 x-11=0$
b $x^{2}+2 x-12 y+13=0$
c $y^{2}-2 y+12 x+11=0$
d $y^{2}-2 y-12 x+13=0$
13. The equation of the line which is tangent to both the circle $x^{2}+y^{2}=5$ and the parabola $y^{2}=40 x$ is
a $2 x-y \pm 5=0$
b $2 x-y+5=0$
c $2 x-y-5=0$
(d) $i-x+55=0$
14. If $2 A+3 B=\left[\begin{array}{ccc}2 & -1 & 4 \\ 3 & 2 & 4\end{array}\right]$ and $A+2 B=\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]$, then B is
a $\left[\begin{array}{ccc}8 & \mathbf{- 1} & 2 \\ -1 & \mathbf{1 0} & -1\end{array}\right]$
(1) $\left[\begin{array}{ccc}8 & 1 & 2 \\ -1 & 10 & -1\end{array}\right]$
(c) $\left[\begin{array}{ccc}8 & 1 & 2 \\ -1 & 10 & -1\end{array}\right]$
($)\left[\begin{array}{ccc}8 & 1 & 2 \\ 1 & 10 & 1\end{array}\right]$
15. If $A=\left[\begin{array}{cc}1 & -3 \\ 2 & k\end{array}\right]$ and $A^{2}-4 A+10 I=A$, then k is equal to
a 0 b. -4
c:) $\mathbf{4}$ annoct $(\boldsymbol{d}$ d) 1 or $\mathbf{4}$
16. The value of $\left|\begin{array}{ccc}x+y & y+z & z+x \\ x & y & z \\ x-y & y-z & z-x\end{array}\right|$ is equal to
a $2 x+y+z$
b $2 x+y+z^{3}$
c $\mathrm{x}+\mathrm{y}+\mathrm{z}{ }^{3}$
d 0
17. On the set Q of all rational numbers the operation * which is both associative and commutative is given by a*b,is
$a \operatorname{a}+b+a b$
b $a^{2}+b^{2}$
c ab+1
d $2 a+3 b$
18. From an aeroplane flying,vertically above a horizontal road, the angles of depression of two consecutive stones on the same side of aeroplane are observed to be 30° and 60° respectively. The height at which the aeroplane is flying in km is
a $\frac{4}{\sqrt{3}}$
b $\frac{\sqrt{3}}{2}$
C $\frac{2}{\sqrt{3}}$
d 2
19. If the angles of a triangle are in the ratio $3: 4: 5$, then the sides are in the ratio
a 2: $\sqrt{6}: \sqrt{3}+1 \quad$ b $\sqrt{2}: \sqrt{6}: \sqrt{3}+1$
c 2: $\sqrt{\overline{3}}: \sqrt{3}+1$
d 3:4:4
20. if $\cos ^{-1} x=\alpha, 0<x<1$ and $\left.\sin ^{-1} 2 x \sqrt{1-x^{2}}+\sec ^{-1} \frac{1}{2 x^{2}-1}\right): \frac{2 \pi}{3}$, than $\tan ^{-1} 2 x$ equals
a $\frac{\pi}{6}$
b $\frac{\pi}{4}$
c $\frac{\pi}{3}$
di) $\frac{\pi}{2}$
21. If $a>b>0$, than the value of $\tan ^{-1}\left(\frac{a}{b}\right)+\tan ^{-1}\left(\frac{a+b}{a-b}\right)$ depends on
a both a and b
b b and not a
c a and not b
d neither a nor b
22. If $A=\{a, b, c\}, B=\{b, c, d\}$ and $C=\{a, d, c\}$, then $A-B \times B \cap C$ is equal to
$a\{a, c, a, d\}$
b $\{a, b, c, d\}$
c $\{c, a, d, a\}$
$d\{a, c, a, d, b, d\}$
23. The function $f: X \rightarrow Y$ defined by $f(x=\sin x$ is one one but not onto, If X and Y are respectiv ely equal to
a $\quad R$ and R
b $[0, \pi]$ and $[0,1]$
c $\left[0,1, \frac{\pi}{2}\right]$ and $[-1,1]$
d $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and $[-1,1]$
24. If $\log _{4} 2+\log _{4} 4+\log _{4} x+\log _{4} 16=6$, then value of x is

$$
(i, 64 \quad \text { b } 4 \text { c } 8 \text { d } 32
$$

25. If $S_{n}=\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+\ldots$ to n terms then $6 S_{n}$ equals
a $\frac{5 n-4}{5 n+6}$
b $\frac{n}{5 n+6)}$
b $\frac{2 n-1}{5 n+6}$
d $\frac{1}{5 n+6)}$
26. The remainder obtained when $1!^{2}+2!^{2}+3!^{2}+\ldots+100!^{2}$ is divided by 10^{2} is
a 27
b 28

C 17
d 14
27. In the group $G=\{1,5,7,11\}$ under multiplication modulo 12 , the solution of $7^{-1} \otimes_{12} x \otimes_{12} 11=5$ is equals
a 5
b 1
c 7 d 11
28. A subset of the additive group of real numbers which is not a subgroup is
a $\{0\},+\quad$ b $Z,+$
(c) ($\mathrm{N},-\mathrm{d} \quad$ (d)
29. If $\overrightarrow{\boldsymbol{\theta}}=\hat{\boldsymbol{t}}+\widehat{\boldsymbol{J}}, \vec{i}=\mathbf{4} \hat{k}-\hat{\boldsymbol{j}}$ and $\vec{r}=\hat{\boldsymbol{\imath}}+\widehat{k}$, then the unit vector in the direction of $\mathbf{3} \overrightarrow{\boldsymbol{j}}+\mathbf{i}-\vec{i}$ is
a $\frac{1}{3} \hat{\imath}+2 \hat{\jmath}+2 \widehat{k}$
b $\left.\frac{1}{3} \hat{\imath}-2 \hat{\jmath}-2 \hat{k}\right)$
C $\frac{1}{3}(\hat{i}-2 \hat{j}+2 \widehat{k}$
1 d $\hat{\boldsymbol{i}}+\mathbf{2} \hat{\boldsymbol{j}}+\mathbf{2} \widehat{\boldsymbol{k}}$
 between ilizand is
a $120{ }^{\circ}$
b 60°
c 30^{0}
d $150{ }^{\circ}$
31. if in is vector perpeticislation to bith , then
a 信 $+\overrightarrow{i j}+\vec{j}$
b $i x+\overrightarrow{i n}+\vec{j}$

32. If the area of the parallqlogram with in and as two adjacent sides is $\mathbf{1 5} \mathrm{sq}$ unit, than the area of the parallelogram having, $3 \overrightarrow{i j}+2$ and $+3 i j$ as two adjacent sides in sq unit is
a 120
b 105
c 75
d 45
33. if the lines $x+3 y-9=0,4 x+b y-2=0$ nand $2 x-y-4=0$ are concurrent,then b equals
a -5
b 5
c 1 d 0
34. The equation of the circle having $x-y-2=0$ and $x-y+2=0$ as two tangents and $x-y=0$ as a diameter is
a $x^{2}+y^{2}+2 x-2 y+1=0$
b $x^{2}+y^{2}-2 x+2 y-1=0$
c $x^{2}+y^{2}=2$
$d x^{2}+y^{2}=1$
35. A circular sector of parimeter 60 m with maximum area is to be constructed. The radius of the circular arc in meter must be
a 20 b 5
c 15 d 10
36. $\int \frac{\left.x^{3}+3 x^{2}+3 x+1\right)}{(x+1)^{5}} \mathrm{dx}$ is equal to
a $-\frac{1}{x+1)}+c$
b $\frac{1}{5} \log x+1+c$
c. $\log x+1+c$
d tan $\quad{ }^{-1} x+c$

$$
a \sin ^{2}\left[1+\log \tan \frac{x}{2}\right]+c
$$

$b \tan \left[1+\log \tan \frac{x}{2}\right]+c$
c $\sec ^{2}\left[1+\log \tan \frac{x}{2}\right]+c$
d $-\tan \left[1+\log \tan \frac{x}{2}\right]+c$
38. The complex number $\frac{(-\sqrt{3+3 i \overline{(1-i)}}}{3+\sqrt{3 i) \theta \sqrt{3+\sqrt{3 i}}}}$ when re[presents in the argand diagram is
a in the second quadrant
b in the first quadrant
c on the y-axis imaginary axis
d on the x-axis real axis
39. If $2 x=-1+\sqrt{3}$, then the value of $1-x^{2}+x^{6}-1-x+x^{2}{ }^{6}$ is equal to
a 32 b
b $\quad-64$
c 64 d 0 o
40. The modulus and amplitude of $\mathrm{I}+\mathrm{I} \sqrt{\overline{3}^{8}}$ are respectively
a 256 ancl $\frac{\pi}{3}$
b 256 and $\frac{2 \pi}{3}$
(c) 2 ad $\frac{2 \pi}{3}$
d 256 and $\frac{8 \pi}{3}$
41. The value of $\lim _{x \rightarrow 0} \frac{5^{x}-5^{-x}}{2 x}$ is
a $\log 5$
b 0
c 1
d $2 \log 5$
42. Which one of the following is not true always ?
a if $f(x$ is not continuous at $x=a$, then it is not differentiable at $x=a$
b If $f x$ is continuous at $x=a$, then it is differentiable at $x=a$
c If $f(x$ and $g x$ are differentiable at $x=a$, then $f(x+g x$ is also
d If a function $f\left(x\right.$ is continuous at $x=a$, then $\quad \lim _{x \rightarrow a} f(x)$ exists
43. $\int \frac{d x}{x \sqrt{x^{6}-16}}$ is equal to
a $\quad{ }_{3}^{1} \sec ^{-1}\left(\frac{x^{3}}{4}\right)+\mathrm{c} \quad \mathrm{b} \cosh ^{-1}\left(\frac{x^{3}}{4}\right)+\mathrm{c}$
c $\frac{1}{12} \sec ^{-1}\left(\frac{x^{3}}{4}\right)+\mathrm{c} d \sec -{ }^{-1}\left(\frac{x^{3}}{4}\right)+\mathrm{c}$
44. If $I_{1}=\int_{0}^{\pi / 2} x \sin x d x$ and $I_{2}=\int_{0}^{\hbar / 2} x \cos x d x$, then which one of the following is true ?
a $1{ }_{1}+I_{2}=\frac{\pi}{2}$
b l ${ }_{1}-I_{2}=\frac{\pi}{2}$
d l ${ }_{1}+\mathrm{I}_{2}=0$
d $I_{1}=l_{2}$
45. If $\mathrm{f}\left(\mathrm{x}\right.$ is defined $[-2,2]$ by $\mathrm{f}\left(\mathrm{x}=4 \mathrm{x}^{2}-3 \mathrm{x}+1\right.$ and $\mathrm{gx}=\frac{f-x)-f(x)}{x^{2}+3}$, then $\int_{-2}^{2} g x$ dx is equal to
a 64 b -48 c 0 d 24
46. The area enclosed between the parabola $y=x^{2}-x+2$ and the line $y=x+2$ in sq unit equals
a $\frac{8}{3}$
b $\frac{1}{3}$
c $\frac{2}{3}$
d $\frac{4}{3}$
47. The solution of the differential equation $e^{-x} y+1 d y+\cos ^{2} x+\sin ^{2} x y d x=0$ subjected to the condition that $\mathrm{y}=1$ when $\mathrm{x}=0$ is

$$
\begin{array}{ll}
\text { a } & Y+\log y+e^{x} \cos ^{2} x=c \\
\text { b } & \log y+1+e{ }^{x} \cos ^{2} x=1 \\
\text { c } & Y+\log y=e^{x} \cos ^{2} x \\
\text { d } & y+1+e^{x} \cos ^{2} x=2
\end{array}
$$

48. If the curve $y=2 x^{3}+a x^{2}+b x+c$ passes through the origin and the tengents drawn to it at $x=-1$ and $\mathrm{x}=\mathbf{2}$ are parallel to the x axis, then the values of a, b and c are respectively
a $12,-3$ and 0
b $-3,-12$ and 0
c -3,12 and 0
d 3, - 12 and 0
49. The locus of the point which moves such that the ratio of its distance from two fixed point in the plane is always a constant $k(<1$ is
a hyperbola
b ellipse
c straight line d circle
50. The circles $a x^{2}+a y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0$ and $b x_{2}+b y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0 a \neq 0$ and $b \neq 0$ cut orthogonally if
a $\quad g_{1} g_{2}+f_{1} f_{2}=a c_{1}+b c_{2}$
b $2 g \quad{ }_{1} g_{2}+f_{1} f_{2}=b c_{1}+\mathrm{ac}_{2}$
c bg ${ }_{1} g_{2}+a f_{1} f_{2}=b c_{1}+a c_{2}$
d $g{ }_{1} g_{2}+f_{1} f_{2}=c_{1}+c_{2}$
