GGSIPU mathmatics 2007

1. If p ^ ~r \rightarrow ~p^q is false,then the truth values of p,q and r are respectively

a T,F and F b F,F and T

c F,Tand T d T,F and T

2. If α , β and γ are the roots of equation x³-8x+8 = 0, then $\sum \alpha^2$ and $\sum \frac{1}{\alpha \cdot \beta}$ are respectively

a 0 and -16 b 16 and 8

c -16 and 0 d 16 and 0

3. The GCD of 1080 and 675 is

- a 145 b 135 c 225 d 125
- 4. If a,b and $c \in N$, then which one of the following is not true ?
 - a a |b and a| c \Rightarrow a| 3b+2c b a |b and a| c \Rightarrow a| c c a |b+c \Rightarrow a| ba and a | c d a |b and a| c \Rightarrow a| b+c

5. x = 4 1+cos θ and y = 1.L+sin θ are the paramatic equations of

a
$$\frac{x-3}{9}^{2} + \frac{y-4}{16}^{2} \approx 1$$

b $\frac{x+4}{16}^{2} + \frac{y+3}{9}^{2} = 1$
c $\frac{x-4}{16}^{2} - \frac{y-3}{9}^{2} = 1$
d $\frac{x-4}{16}^{2} + \frac{y-3}{9}^{2} = 1$

6. If the distance between the foci and the distance between the directrices of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are in the ratio 3:2, then a:b is

b $\sqrt{3}:\sqrt{2}$ c 1:2 (122 7. The ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ have in common a centre only b centre, foci and directrices c centre, foci and vertices d centre and verifices only 8. If sec θ =m and tan θ =n, then $\frac{1}{m}$ [m+n + $-\frac{1}{n+n}$] is a 2 b 2m (c) 2n (d) m 9. The value of $\frac{\sin 85^0 - \sin 35^0}{\cos 65^0}$ is a 2 b -1 c 1 d 0

10. If the length of the tengent from any point on the circle x $-3^2+y+2^2=5r^2$ to the circle x $-3^2+y+2^2=r^2$ is 16 unit, then the area between the two circles in sq unit is

a 32 π **b 4** π **b 8** π **d 256** π

11. The equation of the common tangent of the two touching circles $y^2+x^2-6x -12y +37 = 0$ and $x^2+y^2-6y+7 = 0$ is

- 12. The equation of the parabolas with vertex at -1,1 and focus 2,1 is
 - a y ²-2y-12x-11 = 0 b x ²+2x-12y+13=0

13. The equation of the line which is tangent to both the circle $x^2+y^2=5$ and the parabola $y^2=40x$ is

a
$$2x - y \pm 5 = 0$$

b $2x - y + 5 = 0$
c $2x - y - 5 = 0$
(d) $ix + 5 = 0$
14. If $2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 4 \end{bmatrix}$ and $A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}$, then B is
a $\begin{bmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ (i) $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$
(c) $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ (j) $\begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$
15. If $A = \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix}$ and $A^2 - 4A + 10I = A$, then k is equal to
a 0 b. -4
c:) 4 annext L J d]x J or 4
16. The value of $\begin{vmatrix} x + y & y + z & z + x \\ x & y & z \\ x - y & y - z & z - x \end{vmatrix}$ is equal to
a $2x + y + z^2$ b $2x + y + z^3$
c $x + y + z^3$ d 0

17. On the set Q of all rational numbers the operation * which is both associative and commutative is given by a*b,is

18. From an aeroplane flying, vertically above a horizontal road, the angles of depression of two consecutive stones on the same side of aeroplane are observed to be 30[°] and 60[°] respectively. The height at which the aeroplane is flying in km is

a
$$\frac{4}{\sqrt{3}}$$
 b $\frac{\sqrt{3}}{2}$

$$c \frac{2}{\sqrt{3}}$$
 d 2

19. If the angles of a triangle are in the ratio 3:4:5, then the sides are in the ratio

a 2: $\overrightarrow{6}$: $\overrightarrow{3}+1$ b $\overrightarrow{2}$: $\overrightarrow{6}$: $\overrightarrow{3}+1$ c 2: $\overrightarrow{3}$: $\overrightarrow{3}+1$ d 3:4:4 20. if $\cos^{-1} x = \alpha$, 0 < x < 1 and $\sin^{-1} 2x$ $\overrightarrow{1-x^2} + \sec^{-1} \frac{1}{2x^2-1}$) : $\frac{2z}{3}$, than $\tan^{-1} 2x$ equals a $\frac{\pi}{6}$ b $\frac{\pi}{4}$ c $\frac{\pi}{3}$ dl) $\frac{\pi}{2}$ 21. If a>b0, than the value of $\tan^{-1} \left(\frac{a}{b}\right) + \tan^{-1} \left(\frac{a+b}{a-b}\right)$ depends on

- a both a and b b b and not a
 - c a and not b d neither a nor b

22. If A={a,b,c},B={b,c,d} and C={a,d,c}, then A -B x B \cap C is equal to

a {a,c , a,d} b {a,b , c,d} c {c,a , d,a} d {a,c , a,d ,b,d}

23. The function f:X Y defined by f(x = sin x is one one but not onto, If X and Y are respectively equal to

- a R and R b $[0, \pi]$ and [0,1]c $[0, \frac{\pi}{2}]$ and [-1,1]d $[\frac{-\pi}{2}, \frac{\pi}{2}]$ and [-1,1]
- 24. If $\log_4 2 + \log_4 4 + \log_4 x + \log_4 16 = 6$, then value of x is

25. If $S_n = \frac{1}{6.11} + \frac{1}{11.16} + \frac{1}{16.21} + \dots$ to n terms then $6S_n$ equals

a
$$\frac{5n-4}{5n+6}$$
 b $\frac{n}{5n+6}$
b $\frac{2n-1}{5n+6}$ d $\frac{1}{5n+6}$

26. The remainder obtained when 1! $^{2}+2!$ $^{2}+3!$ $^{2}+...+100!$ 2 is divided by 10² is

a 27 b 28 c 17 d 14

27. In the group G={1,5,7,11} under multiplication modulo 12,the solution of $7^{-1} \otimes_{12} x \otimes_{12} 11=5$ is equals

a 5 b 1 c 7 d 11

28. A subset of the additive group of real numbers which is not a subgroup is

į.

1

29. If $\vec{p} = \hat{i} + \hat{j}$, $\vec{q} = 4\hat{k}\cdot\hat{j}$ and $\vec{r} = \hat{i} + \hat{k}$, then the unit vector in the direction of $3\vec{p} + \vec{q} - 2\vec{k}$ is

a
$$\frac{1}{3}$$
 $\hat{i}+2\hat{j}+2\hat{k}$
b $\frac{1}{3}$ $\hat{i}-2\hat{j}-2\hat{k}$)
c $\frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k})$
d $\hat{i}+2\hat{j}+2\hat{k}$

30. If \vec{u} and \vec{b} are the two vectors such that $|\vec{u}| = 3$ $\vec{3}$, $|\vec{b}| = 4$ and $|\vec{u} + \vec{b}| = 7$, then the angle between \vec{u} and \vec{b} is

31. if \vec{u} is vector perpendicular to both \vec{v} and \vec{t} , then

a \vec{u} + \vec{b} + \vec{b} = $\vec{1}$ b \vec{u} x \vec{b} + \vec{b} = $\vec{1}$

32. If the area of the parallelogram with \vec{u} and \vec{v} as two adjacent sides is 15 sq unit ,than the area of the parallelogram having, $3\vec{u} + 2\vec{v}$ and $\vec{u} + 3\vec{v}$ as two adjacent sides in sq unit is

33. if the lines x+3y-9 = 0, 4x+by-2 = 0 nand 2x-y-4 = 0 are concurrent, then b equals

34. The equation of the circle having x-y-2 = 0 and x-y+2 = 0 as two tangents and x-y=0 as a diameter is

a x
$${}^{2}+y^{2}+2x-2y+1=0$$

b x ${}^{2}+y^{2}-2x+2y-1=0$
c x ${}^{2}+y^{2}=2$
d x ${}^{2}+y^{2}=1$

35. A circular sector of parimeter 60 m with maximum area is to be constructed. The radius of the circular arc in meter must be

a 20 b 5
c 15 d 10
36.
$$\frac{x^3+3x^2+3x+1)}{(x+1)^5}$$
 dx is equal to
a $-\frac{1}{x+1}+c$ b $\frac{1}{5}$ logx+1+c
c Jogx+1+c d tan $^{-1}x+c$
37. $\frac{\cos e x}{\cos^2 1+\log \tan \frac{x}{2}}$ dx is equal to
a sin $^2[1+\log \tan \frac{x}{2}]+c$

b tan[1+log tan
$$\frac{x}{2}$$
] +c
c sec ²[1+log tan $\frac{x}{2}$] +c
d - tan[1+log tan $\frac{x}{2}$] +c

38. The complex number $\frac{(-\sqrt{3+3l})(l-l)}{3+\sqrt{3l}(l-l)}$ when re[presents in the argand diagram is

- a in the second quadrant
- b in the first quadrant
- c on the y -axis imaginary axis
- d on the x -axis real axis

39. If $2x=-1+\overline{3}l$, then the value of $1 - x^2 + x^6 - 1 - x + x^{26}$ is equal to

a32 b -64 c64 d0D

40. The modulus and amplitude of $I + I = \overline{3}^{8}$ are respectively

a 256 and
$$\frac{x}{3}$$
 b 256 and $\frac{2\pi}{3}$
(c) 2 ad $\frac{2\pi}{3}$ d 256 and $\frac{8\pi}{3}$

41. The value of $\lim_{x\to 0} \frac{5^x - 5^{-x}}{2x}$ is

а	log 5	b 0
с	1	d 2 log 5

42. Which one of the following is not true always?

a if f(x is not continuous at x=a,then it is not differentiable at x=a

b If fx is continuous at x= a, then it is differentiable at x=a

c If f(x and gx are differentiable at x=a, then f(x +gx is also

differentiable at x=a

d If a function f(x is continuous at x=a, then $\lim_{x\to a} f(x)$ exists

43.
$$\frac{dx}{x\sqrt{x^6-16}}$$
 is equal to
a $\frac{1}{3}\sec^{-1}\left(\frac{x^3}{4}\right) + c$ b cosh $^{-1}\left(\frac{x^3}{4}\right) + c$
c $\frac{1}{12}\sec^{-1}\left(\frac{x^3}{4}\right) + c$ d sec $-^1\left(\frac{x^3}{4}\right) + c$

44. If $I_1 = \frac{\pi^2}{0} x \sin x \, dx$ and $I_2 = \frac{\pi^2}{0} x \cos x \, dx$, then which one of the following is true ?

$a _{1} + _{2} = \frac{\pi}{2}$	b I $_{1}$ -I $_{2} = \frac{\pi}{2}$
d I _1+I_2 = 0	d I 1=l2

45. If f(x is defined [-2,2] by f(x = 4x²-3x+1 and gx = $\frac{f(-x)-f(x)}{x^2+3}$, then $\frac{2}{-2}g x$ dx is equal to

46. The area enclosed between the parabola $y=x^2-x+2$ and the line y=x+2 in sq unit equals

a
$$\frac{8}{3}$$
 b $\frac{1}{3}$
c $\frac{2}{3}$ d $\frac{4}{3}$

47. The solution of the differential equation $e^{-x}y+1 dy+\cos^{-2} x + \sin^2 x y dx = 0$ subjected to the condition that y=1 when x=0 is

48. If the curve $y=2x^3+ax^2+bx+c$ passes through the origin and the tengents drawn to it at x=-1 and x=2 are parallel to the x axis, then the values of a, b and c are respectively

a 12, -3 and 0 b -3,-12 and 0 c -3,12 and 0 d 3, -12 and 0 49. The locus of the point which moves such that the ratio of its distance from two fixed point in the plane is always a constant k(<1 is

a hyperbola	b ellipse
c straight line	d circle

50. The circles $ax^2+ay^2+2g_1 x +2f_1 y+c_1 = 0$ and $bx_2+by^2+2g_2x+2f_2y+c_2=0 a \neq 0$ and $b\neq 0$ cut orthogonally if

a $g_1g_2 + f_1f_2 = ac_1 + bc_2$ b $2g_1g_2 + f_1f_2 = bc_1 + ac_2$ c $bg_1g_2 + af_1f_2 = bc_1 + ac_2$ d $g_1g_2 + f_1f_2 = c_1 + c_2$